
SlideWiki microservice architecture for collaborative online
system development

ABSTRACT
SlideWiki is an online system for supporting educators and students
in collaborative use of OpenCourseWare (OCW). We combine state
of the art feature development and academic research to achieve this.
Our online, distributed, and open source development of SlideWiki
in an academic and multidisciplinary context introduces challenges
related to separation of concerns, community development, the co-
ordination of geographical distributed researchers and developers,
and the variety of preferred and necessary programming languages
and run-time environments. We present the SlideWiki microservice
architecture that we use for collaborative online system develop-
ment, and discuss how it alleviates above challenges. Our study
exempli�es how a microservice architecture can alleviate challenges
in developing and maintaining large-scale socio-technical systems
in other academic, open source, multidisciplinary, online, and geo-
graphically distributed contexts.

CCS CONCEPTS
• Information systems → World Wide Web; Collaborative and
social computing systems and tools; • Software and its engineer-
ing → Collaboration in software development;

KEYWORDS
Microservice Architecture, Online Collaboration, Distributed De-
velopment, Webdevelopment, OpenCourseWare platform
ACM Reference format:
. 2018. SlideWiki microservice architecture for collaborative online system
development. In Proceedings of ACM Web Science Conference, Amsterdam,
The Netherlands, May 2018 (WebSci18), 2 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
SlideWiki was conceived as an web-based OpenCourseWare (OCW)
authoring system to allow educators to reuse, adapt, and share slide
decks. The �rst version of SlideWiki 1.0 was launched in 2012 [2].
While this version attracted thousands of slides and acquired a
user-base in the open educational community, it required further
development to reach its full potential and become a sustainable
open-source platform for online education.

In 2016 an EU H2020 grant was awarded for SlideWiki redevel-
opment to address scalability and usability issues and better serve
the needs of users with more and modern features including state-
of-the-art research prototypes. This collaboration introduces new

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WebSci18, Amsterdam, The Netherlands
© 2018 Copyright held by the owner/author(s). 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

challenges (marked in boldface text), as we organize development
in an online open source project, in which many researchers and
developers work together from several countries and time-zones.

In order for SlideWiki to be sustained in the long-term, a criti-
cally large community of developers and users needs to be es-
tablished [3]. To support use-cases of large groups of users, many
di�erent types of features are required. These features should be
easily re-used from existing software built in various programming
languages and run-time environments.

Moreover, developing the SlideWiki system requires coordina-
tion and collaboration between researchers and developers from
multiple domains and disciplines, e.g., natural language processing,
pedagogy, didactics, education, semantic web, learning manage-
ment systems, accessibility, usability, etc. The project and commu-
nity members have varying degrees of pro�ciency with di�erent
programming languages and run-time environments. Certain state-
of-the-art research prototypes are only available in (libraries for)
speci�c programming languages and run-time environments.

To work e�ectively, the researchers, developers, and community
contributors thus need a way to develop and integrate di�erent parts
of the SlideWiki system that are built in di�erent programming
language and run-time environments. Moreover, these parts
need to have minimal interdependencies between each other,
to ensure e�ective collaboration. I.e., there needs to be a strict
separation of concerns between parts of the SlideWiki system
that people will work on, for people to work independently.

The use of microservice architecture [5] has recently gained
increased attention from industry and academia, as it provides
bene�ts from allowing easy integration of di�erent technologies
in a system, minimized code dependencies, separation of concerns,
and independent development of system parts [4]. We present the
microservice architecture of SlideWiki that we use for collaborative
online OCW system development. In the next section we explain
in detail how the challenges (marked in boldface) are alleviated.

2 CHALLENGES ALLEVIATED BY
MICROSERVICE ARCHITECTURE

The new SlideWiki microservice architecture is depicted in Figure
1 (The underlying code of SlideWiki can be seen on Github 1). In a
microservice architecture an application is separated into multiple
stand-alone servers which each o�er speci�c functions and data
(compare [5]). The stand-alone servers that each host a microservice
can run on separated dedicated hardware to scale up the system and
ensure high performance, scalability, availability, reliability, and
quality of service. In practice the user interface of SlideWiki (see
’frontend web-service’ in Figure 1) connects to several back-end
microservices to store and retrieve various forms of data, e.g., the
deck service for data of decks and slides2.

1https://github.com/slidewiki/, deployed on e.g., http://slidewiki.org/

https://github.com/slidewiki/
http://slidewiki.org/

WebSci18, May 2018, Amsterdam, The Netherlands

Figure 1: Architecture diagram of SlideWiki 2.0

The use of a microservice architecture alleviates challenges with
community development: It gives freedom for developers to
create microservices by re-using existing software or develop-
ing new software using di�erent programming languages and
run-time environments. The microservices connect to SlideWiki
via well de�ned Web-based Application Programming Interfaces
(APIs) 2 according to the REpresentational State Transfer (REST)
principle [1] which ensures interoperability.

Examples of microservices in di�erent programming languages
and run-time environments are:

(1) Most SlideWiki microservices are built using Node.js (server-
and client-side Javascript) with MongoDB as database

(2) The NLP microservice3 is built in Java (hosted via Play)
(3) We integrated Unoconv (built in Python) as a microservice

Because the microservices expose RESTfull APIs covering the
backend functionality of SlideWiki, the ability to connect to other
systems is increased and made signi�cantly easier. Thus re-use
and integration of existing systems in SlideWiki, as well as interop-
erability between SlideWiki and other systems is improved.

oreover, microservices provides separation of concerns; each
microservice addresses a speci�c concern, for example, storage of
user data, storage of slide data, import of educational content in
Powerpoint, et cetera. The separation of SlideWiki functions and
data into microservices, connected via well-de�ned and backward
compatible Web APIs, minimizes code dependencies, thereby
increasing maintainability and collaboration; it allows researchers
and developers to work in parallel, without having to synchronize

2for example: https://deckservice.slidewiki.org/documentation
3https://github.com/slidewiki/nlp-service and https://nlpservice.slidewiki.org/docs/

between time-zones due to geographic distance, and without wor-
rying about a�ecting or overwriting interdependent code. This also
allows new developers to easily join our project and start working
on code that is largely independent from other code and addresses
a speci�c concern, thereby increasing community development.

3 CONCLUSIONS
We presented the new SlideWiki microservice architecture used
for collaborative online OCW system development. Our study ex-
empli�es how a microservice architecture can alleviate challenges
in developing and maintaining large-scale socio-technical systems
in other academic, open source, multidisciplinary, online, and geo-
graphically distributed contexts.

REFERENCES
[1] Roy Thomas Fielding. 2000. Architectural Styles and the Design of Network-based

Software Architectures. Ph.D. Dissertation. University of California, Irvine.
[2] Ali Khalili, Sören Auer, Darya Tarasowa, and Ivan Ermilov. 2012. SlideWiki: elic-

itation and sharing of corporate knowledge using presentations. In International
Conference on Knowledge Engineering and Knowledge Management. Springer,
302–316.

[3] Kumiyo Nakakoji, Yasuhiro Yamamoto, Yoshiyuki Nishinaka, Kouichi Kishida,
and Yunwen Ye. 2002. Evolution patterns of open-source software systems and
communities. In Proceedings of the international workshop on Principles of software
evolution. ACM, 76–85.

[4] Sam Newman. 2015. Building microservices. O’Reilly Media, Inc.
[5] Eberhard Wol�. 2016. Microservices: Flexible Software Architecture. Addison-

Wesley Professional.

https://deckservice.slidewiki.org/documentation
https://github.com/slidewiki/nlp-service
https://nlpservice.slidewiki.org/docs/

	Abstract
	1 Introduction
	2 Challenges alleviated by microservice architecture
	3 Conclusions
	References

